
DISTRIBUTION OF COURSES FOR
B. Tech. (Agricultural Engineering)

FIRST YEAR

1st Semester

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>1.</td>
<td>EMA 111</td>
<td>Engineering Mathematics-I</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EPH 111</td>
<td>Engineering Physics</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ECHE 111</td>
<td>Engineering Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EME 111</td>
<td>Workshop Practice</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>ECE 111</td>
<td>Surveying and Leveling</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ECE 112</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>EES 111</td>
<td>Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>EEL 111</td>
<td>Electrical Circuits</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 21 credits

Pr. 8

2nd Semester

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>EMA 121</td>
<td>Engineering Mathematics-II</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EEL 121</td>
<td>Computers Programming and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EEL 122</td>
<td>Applied Electronics and Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EAG 121</td>
<td>Agriculture for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>EME 121</td>
<td>Workshop Technology</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>EME 122</td>
<td>Thermodynamics and Heat Engines</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>FMP 121</td>
<td>O & M of Tractor and Farm Machinery-I</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>ECE 121</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 24 credits
1. ENGINEERING MATHEMATICS-I EMA 111 3 (3 + 0)

Differential calculus: Taylor’s and Maclaurin’s expansions; indeterminate form; curvature, asymptotes, tracing of curves, function of two or more independent variables, partial differentiation, homogeneous functions and Euler’s theorem, composite functions, total derivatives, derivative of an implicit function, change of variables, Jacobians, error evaluation, maxima and minima. Integral calculus: Reduction formulae; rectification of standard curves, volumes and surfaces of revolution of curves; double and triple integrals, change of order of integration, Gamma and Beta functions, application of double and triple integrals to find area and volume. Ordinary differential equations: Exact and Bernoulli’s differential equations, equations reducible to exact form by integrating factors, equations of first order and higher degree, Clairaut’s equation, Differential equations of higher orders, methods of finding complementary functions and particular integrals, method of variation of parameters, Cauchy’s and Legendre’s linear equations, simultaneous linear differential equations with constant coefficients, series solution techniques, Bessel’s and Legendre’s differential equations. Vector calculus: Differentiation of vectors, scalar and vector point functions, vector differential operator Del, Gradient of a scalar point function, Divergence and Curl of a vector point function and their physical interpretations, identities involving Del, second order differential operator; line, surface and volume integrals, Stoke’s, divergence and Green’s theorems (without proofs).

Reference:

Practical: To find the frequency of A.C. supply using an electrical vibrator; To find the low resistance using Carey Foster bridge without calibrating the bridge wire; To determine dielectric constant of material using De Sauty’s bridge; To determine the value of specific charge (e/m) for electrons by helical method; To study the induced e.m.f. as a function of velocity of the magnet; To obtain hysteresis curve (B-H curve) on a C.R.O. and to determine related magnetic quantities; To study the variation of magnetic field with distance along the axis of a current carrying circular coil and to determine the radius of the coil; To determine the energy band gap in a semiconductor using a p-n Junction diode; To determine the slit width from Fraunhofer diffraction pattern using laser beam; Determination of ultrasonic wave velocity in a liquid medium; To find the numerical aperture of optical fiber; To set up the fiber optic analog and digital link; To study the phase relationships in L.R. circuit; To study LCR circuit; To study the variations of thermo e.m.f. of a copper-constantan thermocouple with temperature; To find the wave length of light by prism.

Reference:

Practical: Determination of temporary and permanent hardness of water by EDTA method; Estimation of chloride in water; Estimation of dissolved oxygen in water; Determination of BOD in water sample; Determination of COD in water sample; Estimation of available chlorine in bleaching powder; Determination of viscosity of oil; Estimation of alkalinity of water sample; Determination of carbonate and non-carbonate hardness by soda reagent; Determination of coagulation of water and chloride ion content; Determination of specific rotation of an optically active compound; Determination of λ_{max} and verification of Beer Lambert Law; Determination of calorific value of fuel; Identification of functional groups (alcohol, aldehyde, keline, carbonylic acid and amide) by IR; Chromatographic analysis; Determination of molar refraction of organic compounds.

Reference:

4. WORKSHOP PRACTICE EME 111
1 (0+1)

Practical: Introduction to various carpentry tools, materials, types of wood and their characteristics and Processes OR operations in wood working; Preparation of simple joints: Cross half Lap joint and T-Halving joint; Preparation of Dovetail joint, Mortise and tenor joint; Introduction to Smithy tools and operations; Jobs on Bending, shaping etc.; Jobs on Drawing, Punching, Rivetting; Introduction to tools and measuring instruments for fitting; Jobs on sawing, filing and right angle fitting of MS Flat; Practical in more complex fitting job; Operations of drilling,, reaming, and threading with tap and dies; Practical test; Introduction to tools and operations in sheet metal work; Making different types of sheet metal joints using G.I. sheets.

Reference:

5. SURVEYING AND LEVELING ECE 111

Practical: Chain survey of an area and preparation of map; Compass survey of an area and plotting of compass survey; Plane table surveying; Leveling. L-section and X-sections and its plotting; Contour survey of an area and preparation of contour map; Introduction of software in drawing contour; Theodolite surveying; Ranging by theodolite, Height of object by using theodolite; Setting out curves by theodolite; Minor instruments.

Reference:

Practical: Introduction of drawing scales; Principles of orthographic projections; References planes; Points and lines in space and traces of lines and planes; Auxiliary planes and true shapes of oblique plain surface; True length and inclination of lines; Projections of solids (Change of position method, alteration of ground lines); Section of solids and Interpenetration of solid-surfaces; Development of surfaces of geometrical solids; Isometric projection of geometrical solids.

Reference:

References:

Average and effective value of sinusoidal and linear periodic wave forms. Independent and dependent sources, loop current and loop equations (Mesh current method), node voltage and node equations (Nodal voltage method), Network theorems: Thevenin’s, Norton’s, Superposition, Reciprocity and Maximum power transfer, Star- Delta conversion solution of DC circuit by Network theorems, Sinusoidal steady state response of circuits, Instantaneous and average power, power factor, reactive and apparent power, Concept and analysis of balanced polyphase circuits, Laplace transform method of finding step response of DC circuits, Series and parallel resonance, Classification of filters, constant-k, m-derived, terminating half network and composite filters.

Practical: To familiarize with the components and equipments used in Laboratory; To verify Kirchhoff’s current laws; To verify Kirchhoff’s voltage laws; To verify Thevenin theorems; To verify Norton’s theorems; To verify Superposition theorem; To verify reciprocity theorem; To study the sinusoidal response of RL series circuit; To study the sinusoidal response of RC series circuit; To study the step response of RL series circuit; To study the step response of RC series circuit; To study the response of constant K-filters; To study the response of m-derived filters; To study power consumed in a three-phase circuit.

References:

1. ENGINEERING MATHEMATICS-II EMA-121 3 (3+0)

Reference:

2. COMPUTER PROGRAMMING AND DATA STRUCTURES EEL 121 3 (1+ 2)

Introduction to high level languages, Primary data types and user defined data types, Variables, typecasting, Operators, Building and evaluating expressions, Standard library functions, Managing input and output, Decision making, Branching, Looping, Arrays, User defined functions, passing arguments and returning values, recursion, scope and visibility of a variable, String functions, Structures and union, Pointers, Stacks, Push/Pop operations, Queues, Insertion and deletion operations, Linked lists.

Practical: Familiarizing with Turbo C IDE; Building an executable version of C program; Debugging a C program; Developing and executing simple programs; Creating programs using decision making statements such as if, go to & switch; Developing program using loop statements while, do & for; Using nested control structures; Familiarizing with one and two dimensional arrays; Using string functions; Developing structures and union; Creating user defined functions; Using local, global & external variables; Using pointers; Implementing Stacks; Implementing push/pop functions; Creating queues; Developing linked lists in C language; Insertion/Deletion in data structures.

References:
Semiconductors, p-n junction, V-I characteristics of p-n junction, diode as a circuit element, rectifier, clipper, clamper, voltage multiplier, capacitive filter, diode circuits for OR & AND (both positive and negative logic), bipolar junction transistor: operating point, classification(A,B & C) of amplifier, various biasing methods (fixed, self, potential divider), h-parameter model of a transistor, analysis of small signal, CE amplifier, phase shift oscillator, analysis of differential amplifier using transistor, ideal OP-AMP characteristics, linear and non-linear applications of OP-AMP (adder, subtractor, integrator, active rectifier, comparator, differentiator, differential, instrumentation amplifier and oscillator), zener diode voltage regulator, transistor series regulator, current limiting, OP-AMP voltage regulators, Basic theorem of Boolean algebra, Combinational logic circuits(basic gates, SOP rule and K-map), binary ladder D/A converter, successive approximation A/D converter, generalized instrumentation, measurement of displacement, temperature, velocity, force and pressure using potentiometer, resistance thermometer, thermocouples, Borden tube, LVDT, strain gauge and tacho-generator.

Practical: To study V-I characteristics of p-n junction diode; To study half wave, full wave and bridge rectifier; To study transistor characteristics in CE configurations; To design and study fixed and self bias transistor; To design and study potential divider bias transistor; To study a diode as clipper and clamper; To study a OP-AMP IC 741 as inverting and non-inverting amplifier; To study a OP-AMP IC 741 as differentiator amplifier; To study a differential amplifier using two transistor; To study a OP-AMP IC 741 as differential amplifier; To study a zener regulator circuit; To study a OP-AMP IC 741 as a active rectifier; To study a OP-AMP IC 741 as a comparator; To familiarize with various types of transducers.

References:

Soils: Nature and origin of soil; soil forming rocks and minerals, their classification and composition, soil forming processes, classification of soils – soil taxonomy orders; important soil physical properties; and their importance; soil particle distribution; soil inorganic colloids – their composition, properties and origin of charge; ion exchange in soil and nutrient availability; soil organic matter – its composition and decomposition, effect on soil fertility; soil reaction – acid, saline and sodic soils; quality of irrigation water; essential plants nutrients – their functions and deficiency symptoms in plants; important inorganic fertilizers and their reactions in soils. Agronomy: Definition and scope of agronomy. Classification of crops, Effect of different weather parameters on crop growth and development. Principles of tillage, tilth and its characteristics. Soil water plant relationship and water requirement of crops, weeds and their control, crop rotation, cropping systems, Relay cropping and mixed cropping. Horticulture: Scope of horticultural and vegetable crops. Soil and climatic requirements for fruits, vegetables and floriculture crops, improved varieties, Criteria for site selection, layout and planting methods, nursery raising, macro and micro propagation methods, plant growing structures, pruning and training, fertilizer application, fertigation, irrigation methods, harvesting, grading and packaging, post harvest practices, Garden tools, management of orchard, Extraction and storage of vegetables seeds.

Practical: Identification of rocks and minerals; Examination of soil profile in the field; Determination of bulk density; particle density and porosity of soil; Determination of organic carbon of soil; Identification of crops and their varieties seeds and weeds; Fertilizer application methods; Different weed control methods; Judging maturity time for harvesting of crop; Study of seed viability and germination test; Identification and description of important fruit; flowers and vegetables crops; Study of different garden tools; Preparation of nursery bed; Practices of pruning and training in some important fruit crops.

Reference:
5. WORKSHOP TECHNOLOGY EME 121 3 (2+1)

Practical: Introduction to welding equipment, processes tools, their use and precautions; Jobs on ARC welding – Lap joint, butt joint; T-Joint and corner joint in Arc welding; Gas welding Practice – Lab, butt and T-Joints; Introduction to metal casting equipment, tools and their use; Mould making using one-piece pattern and two pieces pattern; Demonstration of mould making using sweep pattern, and match plate patterns; Practical test; Introduction to machine shop machines and tools; Demonstration on Processes in machining and use of measuring instruments; Practical jobs on simple turning, step turning; Practical job on taper turning, drilling and threading; Operations on shaper and planer, changing a round MS rod into square section on a shaper; Demonstration of important operations on a milling machine, making a plot, gear tooth forming and indexing; Any additional job.

Reference:

6. THERMODYNAMICS AND HEAT ENGINES

Practical: Study of boilers; Study of various mountings and accessories of boilers; Study of steam engine; To measure dryness fraction of steam; Performance test of steam engine; Study of I.C. engines; Study of valve timing diagram of 2-stroke engines; Study of valve timing diagram of 4-stroke engines; Performance test on 2- cylinder diesel engines; Performance test and heat balance test on a four cylinder horizontal diesel engine; Practical test; To conduct Morse test on multi-cylinder petrol engine; Comparison of different temperature measuring methods; To verify inverse square law of radiation; To verify Stefan-Boltzman relationship; To determine the emissivity of a given material.

References:

2. Domkundwar : Thermal Engineering.
7. **OPERATION & MAINTENANCE OF TRACTOR & FARM MACHINERY–I**
FMP-121 1(0+1)

Practical: Introduction to various systems of a tractor viz. fuel, lubrication, cooling, electrical, transmission, hydraulic & final drive system. Familiarisation with tractor controls & learning procedure of tractor starting and stopping. Driving in forward and reverse gears. Driving safety rules. Hitching, adjustments, settings and field operation of farm machinery. Familiarisation with different makes & models of 4-wheeled tractors. Starting & stopping practice of the tractor. Familiarisation with instrumentation panel & controls; Road signs, traffic rules, road safety, driving & parking of tractor; Tractor driving practice forward & reverse driving practice; Tractor driving practice with two wheeled tractor trailer forward & reverse; Study and practising the hitching and dehitching of implements; Study operation and field adjustments of MB plough & disk plough; Field operation of trailing & mounted disk harrow; Field operation and adjustments of seed drill/planter/sprayer.

References:

7. Liljedhi, B.L. 1990. Tractors and their Power Units, John Willey and Sons, New Delhi.

Practical: Problems on; Composition and resolution of forces, moments of a force, couples, transmission of a couple, resolution of a force into a force & a couple; Problems relating to resultant of; a concurrent - coplaner force system, nonconcurrent - coplaner force system, nonconcurrent - noncoplaner force system, parallel - noncoplaner force system, system of couples in space; Problems relating to centroids of composite areas; Problems on moment of inertia, polar moment of inertia, radius of gyration, polar radius of gyration of composite areas; Equilibrium of concurrent – coplaner and nonconcurrent – coplaner force systems; Problems involving frictional forces; Analysis of simple trusses by method of joints and method of sections; Analysis of simple trusses by graphical method; Problems relating to simple stresses and strains; Problems on shear force and bending moment diagrams; Problems relating to stresses in beams; Problems on torsion of shafts; Analysis of plane and complex stresses.

Reference: